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Abstract Associative learning is a central building block

of human cognition and in large part depends on mecha-

nisms of synaptic plasticity, memory capacity and fronto–

hippocampal interactions. A disorder like schizophrenia is

thought to be characterized by altered plasticity, and

impaired frontal and hippocampal function. Understanding

the expression of this dysfunction through appropriate

experimental studies, and understanding the processes that

may give rise to impaired behavior through biologically

plausible computational models will help clarify the nature

of these deficits. We present a preliminary computational

model designed to capture learning dynamics in healthy

control and schizophrenia subjects. Experimental data was

collected on a spatial-object paired-associate learning task.

The task evinces classic patterns of negatively accelerated

learning in both healthy control subjects and patients, with

patients demonstrating lower rates of learning than con-

trols. Our rudimentary computational model of the task was

based on biologically plausible assumptions, including the

separation of dorsal/spatial and ventral/object visual

streams, implementation of rules of learning, the explicit

parameterization of learning rates (a plausible surrogate for

synaptic plasticity), and learning capacity (a plausible

surrogate for memory capacity). Reductions in learning

dynamics in schizophrenia were well-modeled by reduc-

tions in learning rate and learning capacity. The synergy

between experimental research and a detailed computa-

tional model of performance provides a framework within

which to infer plausible biological bases of impaired

learning dynamics in schizophrenia.

Keywords Learning dynamics � Schizophrenia �
Computational models

Introduction

Schizophrenia is possibly the most complex psychiatric

illness and pathology in the hippocampal and prefrontal

systems are regarded as central to the disorder (Harrison

and Lewis 2001). The role of these systems in associative

learning and memory is well established (Toni et al. 2001)

and has been emphasized in biologically plausible models

(Rolls et al. 2002) that capture interactions between hip-

pocampal sub-units and cortical regions. Models of

hippocampal dysfunction in schizophrenia have suggested

that lesions in entorhinal to cornu ammonis (CA) region

signals, impair context dependent retrieval of paired asso-

ciates (Siekmeier et al. 2007) suggesting that reduced

N-methyl-D-aspartate (NMDA) receptor activity in these

V. A. Diwadkar � M. S. Keshavan

Department of Psychiatry & Behavioral Neuroscience,

Wayne State University SOM, Detroit, MI, USA

V. A. Diwadkar � M. S. Keshavan

Department of Psychiatry, University of Pittsburgh SOM,

Pittsburgh, PA, USA

B. Flaugher � T. Jones � L. Zalányi � P. Érdi (&)
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Computational Neuroscience Group, Department of Biophysics,

KFKI, Budapest, Hungary

123

Cogn Neurodyn (2008) 2:207–219

DOI 10.1007/s11571-008-9054-0



hippocampal regions may underlie impaired memory

retrieval. These models have not been designed to explic-

itly capture learning dynamics or changes in the rate of

accumulation of memory. Learning dynamics are crucially

related to synaptic plasticity that is, the degree to which

synaptic strengths between units are modifiable (Silva

2003). To that end we present experimental results of an

object-association learning task in control subjects and

schizophrenia patients, and present a computational model

of the task designed to model intact and altered learning

dynamics. The model is designed to incorporate known

principles of neural organization, such as the separation

between the dorsal (spatial location) and ventral (object)

visual streams (Haxby et al. 1991), the role of the hippo-

campus as the primary site for the storage of amodal

association information (Squire et al. 2004), and standard

rules for associative learning (Rescorla and Wagner 1972).

Our aim is to present a preliminary framework that cap-

tures altered memory dynamics in schizophrenia using a

biologically plausible computational model.

Schizophrenia pathophysiology

Schizophrenia is one the most debilitating mental illnesses in

the world. Global incidence rates are estimated at between

1% and 2% and the illness has profound personal costs for

patients and their families, and widespread societal costs

(Murray and Lopez 1996). The illness is widely accepted as

being biological (Diwadkar and Keshavan 2003) and

developmental in its bases (Keshavan et al. 2006). Decades

of biological research have provided convincing evidence of

deficits from post mortem studies of brain morphology

(Benes et al. 1991; Glantz and Lewis 2000), in vivo brain

morphometric reductions (McCarley et al. 1999), function

(Kircher and Thienel 2005) and neurochemistry (Keshavan

et al. 2000). The genetic bases of the disorder is thought to be

complex and heterogeneous, and several candidate genes

have been identified particularly those associated with cor-

tical interneuronal monoaminergic signaling, primarily

relating to the regulation of glutamate neurotransmission

(Harrison and Weinberger 2005).

Dopamine-related and glutamate-related vulnerability

can also be associated with abnormal function of the pre-

frontal cortex and the hippocampus in the illness.

Numerous studies have associated impaired dopamine-

related prefrontal function and glutamate related hippo-

campal function as being central to the pathology of

schizophrenia (Goldman-Rakic 1999a; Harrison 2004).

Abnormal dopamine levels in the prefrontal cortex may

directly affect modulation of the excitability of prefrontal

neurons (Goldman-Rakic 1999b; Henze et al. 2000) and

there is evidence that supra- or sub-normal levels of

dopamine impair working memory (Vijayraghavan et al.

2007; Zahrt et al. 1997). This hyper- or hypo-dopaminergia

may cause working memory impairments which are asso-

ciated with schizophrenia pathology. Further, controlled

drug trials in schizophrenia patients have documented the

facilitative effects of dopamine enhancing drugs such as

risperidone on working memory (McGurk et al. 2005).

Complex glutamate–dopamine interactions may also be

implicated (Castner and Williams 2007). The induction of

the NMDA antagonist MK801 produces a dose-dependent

increase in irregularly discharged single spikes with a

concomitant decreases in burst discharges in the prefrontal

cortex of freely moving animals. Whereas high frequency

discharges are effective in releasing neurotransmitters and

therefore central for organized behavior (Lisman et al.

1998), increases in single spike discharges may serve to

limit the signal transmission efficiency of prefrontal neu-

rons as well as impair the filtering of irrelevant information

(Jackson et al. 2004). Conversely, the in vitro application

of NMDA and D1 receptor agonists in prefrontal neurons

induces increased inter-spike activity that may lead to the

more efficient encoding or processing of information

(Durstewitz and Gabriel 2007). Thus altered glutamatergic

function may lead to a limitation in the efficiency of pro-

cessing in the prefrontal cortex, and may be expressed as

aberrant increases in functional magnetic resonance

imaging (fMRI) measured prefrontal cortical activity in

schizophrenia during working memory tasks (Manoach

2003).

Altered NMDA function in the hippocampus has also

been implicated in schizophrenia pathophysiology. NMDA

receptors (NMDAR) are synaptic coincidence detectors

(Bliss and Collingridge 1993) and therefore essential for

long term potentiation, which is itself a basis for learning

and memory consolidation (Chen and Tonegawa 1997;

Shimizu et al. 2000). Reduced NMDAR function has been

implicated as a model for schizophrenia pathology (Olney

and Farber 1995; Greene 2001; Konradi and Heckers 2003)

and in vivo imaging studies have provided evidence of

aberrant hippocampal recruitment during tasks of episodic

memory (Heckers et al. 1998; Weiss et al. 2003) and

memory formation (Achim et al. 2007).

Studies of learning and memory are ideal to understand

hippocampal and prefrontal contributions to schizophrenia-

related dysfunction, yet few have been applied systemati-

cally. Associative learning in particular is a cognitive

domain with well-understood implementations in the hip-

pocampus (Buchel et al. 1999), and associations with the

glutamatergic system (Silva 2003). Studies have suggested

that learning impairments are a marker of hippocampal

impairment in schizophrenia (Wood et al. 2002). Further-

more, computational models of hippocampal function in

the service of learning and memory have richly captured
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the interactions between the region’s sub-units (Rolls 1996)

and have begun to be applied to cognitive impairment in

schizophrenia (Siekmeier et al. 2007). Below we briefly

review the bases of associative learning and memory in the

brain before describing computational simulations of a

formal model designed to capture bases of learning

impairment in schizophrenia.

Associative learning and memory in the brain

Associative learning and memory are cornerstones of

human and animal cognition with relevance to the several

other cognitive domains. For example, the ability to asso-

ciate memoranda with each other or with context underlies

successful spatial navigation in the rodent (Poucet and

Benhamou 1997) and spatial learning in the primate

(Brasted et al. 2003). Associative memory and learning are

also related to a wide variety of skill acquisition tasks in

the human and have been associated with successful lexical

acquisition in human imaging studies (Breitenstein et al.

2005). The central role of associative learning and memory

in cognition can be understood based on the key role of the

medial temporal lobe and its sub-structures in these pro-

cesses, and the placement of the medial temporal lobe in

the hierarchy of connectivity across the uni- and hetero-

modal pathways in the brain (Lavenex and Amaral 2000;

Mesulam 1998).

The weight of experimental evidence clearly indicates

that the medial temporal lobe, including the hippocampus

and its sub-units such as the CA, the dentate gyrus (DG)

and the subiculum, and adjacent structures such as the

entorhinal cortex are central to the initial formation of long

term associative memories. These regions occupy a unique

anatomical place within the realm of cortical and sub-

cortical connections receiving inputs from the sensory

areas in unimodal association cortex and from heteromodal

areas such as the dorsal and ventral prefrontal cortex via

the entorhinal cortex. The medial temporal lobe is therefore

uniquely positioned to integrate inputs from uni- and het-

ero-modal areas before redistribution of potentiated

associations into the neo-cortex (Eichenbaum 2001). This

general framework provides a good explanation for the

patterns of anterograde amnesia in classic neuropsycho-

logical studies of patients with hippocampal lesions

(Scoville and Milner 1957) in which the retention of

memories before the lesion is preserved but the formation

of new long term memories is impaired. It also is consistent

with experimental work in animals: Lesions that are

applied to the hippocampus early during learning devastate

trace conditioning preventing eventual consolidation of

traces in long term memory (Takehara et al. 2003). When

the function of the medial temporal lobe is impaired during

learning of associations, memorial representations that rely

on this hippocampal activity are either not formed, or are

formed to inadequate strength (Squire et al. 2004). Thus,

memory is inadequately established and is unavailable at

the fidelity needed when recall is required.

In the human brain, the interplay between evolutionarily

mature prefrontal and hippocampal regions underlies

associative learning. Whereas the precise contributions of

each of these regions is the subject of debate (McClelland

et al. 1995), conscious associative encoding may involve

persistent prefrontal activity needed to maintain represen-

tations in working memory (Hazy et al. 2007). Concurrent

activity within the medial temporal lobe may be needed to

create a-modal traces of bound associations (Law et al.

2005). Experimental work using in vivo imaging studies

has highlighted the involvement of both the hippocampus

and prefrontal cortex in memory encoding and retrieval

(Simons and Spiers 2003). Separate studies of behavioral

pharmacology have identified molecular mechanisms for

associative learning. Activity of the N-methyl-D-aspartate

(NMDAR) receptor and its sub-units (NR1-2) in the hip-

pocampus are specifically implicated (Chen and Tonegawa

1997). The NMDAR is thought to endow long-term

potentiation with Hebbian characteristics, by allowing

electrical events at the postsynaptic membrane to be

transduced into chemical signals. These in turn activate

pre- and postsynaptic mechanisms to generate a persistent

increase in synaptic strength. The increased synaptic

strength is a hallmark of associative learning as outlined in

early formal theories (Hebb 1949). (For a review on post-

Hebbian algorithms see Érdi and Somogyvári 2002). Thus,

the interplay between prefrontal and hippocampal systems

may have complex neurochemical bases characterized by

interactions between the D1 receptor of the dopaminergic

system and the NMDAR (Castner and Williams 2007).

Single unit recordings and fMRI studies have exten-

sively documented hippocampal involvement during

associative encoding and retrieval. For example, spike rate

activity in hippocampal neurons increases with success in

encoding, with a categorical shift in activity from sub- to

supra-threshold behavior following successful encoding

(Wirth et al. 2003). Furthermore, sharp increases in fMRI-

measured activity in the hippocampus are observed during

associative memory tasks (Law et al. 2005; Zeineh et al.

2003) and studies have demonstrated the critical depen-

dence on the hippocampus in tasks of object-location

association (Milner et al. 1997).

Neurobiological background of the learning model

The model incorporates several crucial biological aspects

based on experimental data in humans (controls and
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patients) and animals. In particular, we take into account

that (i) there is a separation between ‘‘where’’ and ‘‘what’’

regions; (ii) synaptic plasticity is reduced for patients and

(iii) patients show reduced cognitive performance. These

points are further expanded on below.

(i) Primate studies indicate a general separation of the

extra-striate visual streams into the dorsal (spatial

location, parietal cortex) and ventral (object identity)

pathways (Ungerleider 1995). This separation and

cooperation between systems is consistent with

in vivo imaging studies that suggest relative special-

ization of the dorsal stream (parietal systems) for the

processing of spatial information, and of the ventral

stream for the processing of object identity (Sommer

et al. 2005). Any biologically plausible model of

object-location learning must preserve the functional

and structural separation between these classes of

inputs. Because of the role of the hippocampal

formation and its sub-units, particularly the entorhinal

cortex, the DG and the CA (Lavenex and Amaral

2000) in consolidating associations, these regions

serve as the repository of amodal associations over

intermediate time scales (such as are employed in the

experimental paradigm). Therefore, a model of learn-

ing must incorporate a neural mechanism to bind

associations between disparate modal inputs.

(ii) Synaptic plasticity is a central mechanism that is

necessary to achieve associative learning (Chen and

Tonegawa 1997). For example, synaptic plasticity

within hippocampal sub-units is a central determinant

in the efficacy of learning and memory (Silva 2003),

and reduced synaptic plasticity is a potential charac-

teristic of altered functional organization in

schizophrenia (Konradi and Heckers 2003, Stephan

et al. 2006). Therefore parameters that govern the

rate of change of associative strengths may be central

to modeling deficits in learning in schizophrenia.

Such parameters need not encapsulate processing

assumptions regarding the supervisory role of regions

such as the prefrontal cortex in the manner of other

models of learning and memory (Hazy et al. 2006;

O’Reilly and Frank 2006). However they can provide

a quantitative parameterization of upstream (hippo-

campus to frontal cortex) and/or downstream (frontal

cortex to hippocampus) modulations of memory

encoding that underlie associative learning.

(iii) Studies suggest limitations in peak performance

ability in schizophrenia. Schizophrenia patients

show reduced working memory capacity (Jansma

et al. 2004) that may be related to reduced gamma-

frequency synchronized neuronal activity in pre-

frontal GABA neurons (Lewis et al. 2005), as well

as reduced structural and functional capacity of the

hippocampus (Heckers 2001). Therefore, parame-

ters that reflect capacity limitations may be

essential to capturing intrinsic differences in per-

formance limits between the healthy and the

schizophrenia brain.

The aim behind modeling is to capture dynamic neural

principles in a computational framework that permits

experimentation and synergies with experimental data

(Hasselmo and McClelland 1999). The application of

computational models to schizophrenia function has been

relatively sparse but several informative efforts exist. For

example, neural network simulations have documented

hallucinatory outputs following elimination of working

memory synapses, providing an informative existence

proof of how excessive prefrontal synaptic pruning

(Keshavan et al. 1994) may give rise to cognitive and

phenotypic characteristics in schizophrenia (Hoffman and

McGlashan 1997). Modeling efforts can characterize net-

work interactions in regions of the associative memory

network in terms of changes in parameter values that rep-

resent biologically relevant processes such as synaptic

strength or firing rates. Models can therefore provide an

explanatory framework for integrating empirical data in

control and schizophrenia behavior and be predictive of

behaviors in other cognitive domains.

Below we present an explanation of the experimental

task with detailed specification of the model, and its pro-

cessing constituents as they relate to the general and

specific principles of neurobiology of the healthy and the

schizophrenia brain. These descriptions are followed by

presentations of empirically achieved results from control

and schizophrenia patients as well as a characterization of

model behavior in different regions of the parameter space

that define ‘‘control’’ and ‘‘schizophrenia’’ performance.

These simulation results give insight into the normal and

pathological neural mechanisms of the associative learning

task presented.

Methods

Subjects

Healthy controls (n = 11; mean age = 22 years, sd = 5; 5

females) and stable early course patients diagnosed with

schizophrenia or schizoaffective disorder (n = 11; mean

age = 26 years; sd = 5; 3 females) gave informed consent

to participate in the protocol approved by the Wayne State

University Human Investigative Committee (HIC). Groups

did not differ in terms of age (P [ 0.10). Patients were

diagnosed using DSM-IV, SCID and consensus diagnosis.
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All were on a regimen of atypical antipsychotics (Ris-

peridone, Olanzapine or Aripiprazole), were recruited from

the Services for Early Treatment of Psychosis program at

Wayne State University and were in the early stages of

their illness (\5 years). Subjects were paid for their

participation.

Experimental methods

Subjects participated in an associative learning/memory

task adapted from previous studies (Buchel et al. 1999).

During the course of the task, subjects learned the associ-

ations between nine equi-familiar objects drawn from a

standardized battery (Snodgrass and Vanderwart 1980)

over a series of encoding/consolidation and retrieval

epochs. During each epoch, objects were presented in their

associated location in space (3s/object) for naming. All

nine objects were shown in random order. Following a

brief rest interval, the nine locations were cued (with a

square) in random order and subjects were required to

recall the object associated with the location. Eight blocks

(each cycling between encoding, rest and retrieval) were

employed. A schematic of the task is depicted in Fig. 1.

Computational modeling

The preliminary model is designed to simulate the behav-

ioral associative learning task, and final model output is

learning curves that depict output over each iteration of

recall. As will be evident, the model incorporates the

separation between encoding/consolidation and cued recall

while also retaining biological plausible relationships

between model architecture and neural systems, as well as

known learning parameters in the brain.

Encoding/consolidation

Separate neural systems are represented by two separate

nine dimensional binary vector inputs supplied to the

model representing the object shown to the subject and the

location of the object named aL and aO respectively. Nine

unique object–location vector pairs for each trial represent

the nine unique object–location relationships in the task. A

normally distributed noise term with positive values and a

mean of 0.5 is added to each element to simulate back-

ground neural activity in the brain and to remove

binarization of the input vectors. The mean of the noise

term is not trivial and is chosen in relation to the other

model parameters to provide acceptable results.

Each vector pair is dyadically multiplied to form a single

object–location association matrix A, which has elements

that fall into three categories. The element that results from

multiplying the active signal of aL and aO contains the

strongest association. Every other element in the row and

column that it occupies is the product of active signal and a

noise term. The remaining elements, those that are not in the

row or column of the active signal, are the product of only

noise terms and contain no meaningful signal.

Each A is added to form W(t). Because of the unique-

ness of the objects and locations in aL and aO, W(t) only

exhibits two different types of elements.

W tð Þ ¼
X9

t¼1

Ai ð1Þ

As each object and location in a trial occupies a different

component in the respective aL and aO, each column and

row of W(t) has a term that has active signal with added

noise. The remaining elements in W(t) are terms of signal

multiplied by noise with added noise. W(t) has nine

elements that hold correct multiplicative associations with

noise and 72 elements that hold incorrect additive

associations. W(t) is multiplied by a learning rate r(t) that

modulates the strength of associations on a trial-wise basis

to form W(t + 1). The computation underlying the

encoding matrix is described in Eq. 2.

W t þ 1ð Þ ¼ r tð ÞW tð Þ ð2Þ

where W(0) equals the zero matrix.

The Rescorla–Wagner based learning rule used is

described in Eq. 3.

r tð Þ ¼ rmax Smax � S t ¼ 1ð Þð Þ ð3Þ

As seen in Eq. 3, the learning rule r(t) is a function of a

learning rate coefficient, rmax, the maximum possible

performance, Smax and the performance of the subject on

the previous iteration, S(t - 1). The learning rate

coefficient rmax is a parameter that depends on the state

of the subject (control or patient). Both groups of subjects

Fig. 1 Structure of the experimental paradigm is depicted with two

examples of associations presented during encoding/consolidation

(‘‘bed’’ and ‘‘book’’) and examples of those locations cued during

recall/retrieval
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show monotonically increasing performance over time, that

is, incremental learning. Therefore as S(t - 1) increases,

r(t) will generally decrease as t increases, that is over

several iterations of the task.

During encoding in Eq. 2, the learning rate r(t) functions

as a supervisory parameter by modulating the strength of

the encoding matrix W at any instant during learning,

depending on its own parameterization in Eq. 3. Crucially,

at any given time t during learning the association matrix

W(t) represents the strengths between associations to be

learned during the task.

Recall

During recall, the model is given a noiseless input aL which

represents the location cue (see Fig. 1). aL is multiplied

with the encoding matrix W(t + 1) to select the column of

W(t) that contains the information of which object is

associated with the chosen aL. This recalled column is a

vector y in Eq. 4:

y ¼ aL W tð Þ ð4Þ

Each element in y must be evaluated to determine if it is

an active recall or a noise induced value. A threshold s is

used to make this discrimination:

s :
1

81

X9

i¼1

X9

j¼1

Wij t þ 1ð Þ þ p max W t þ 1ð Þð Þ½ � ð5Þ

where i is a column of W(t) and j is a row of W(t) and

p is a chosen multiplier between 0 and 1. The threshold

is determined by averaging the elements of W(t) and

adding the largest element in W(t + 1) multiplied by p.

This premium controls the sensitivity of the model to

noise.

Results

Behavioral results

Figure 2 depicts mean experimentally derived performance

(percentage of correct associations retrieved) as a function

of epoch (1 to 8) for each of the two groups. Behavioral

data were lost for three subjects on account of experimenter

error. Behavioral data were analyzed to: (a) approximate

learning functions for each group and (b) assess differences

between groups in learning potential and rate. Patients

learn at a slower rate than controls, but show monotonic

increases in performance, suggesting (sub-optimal)

engagement of memory consolidation systems. To increase

power to assess differences between groups we analyzed

performance as a function of ‘‘early’’ vs. ‘‘late’’ recall

(denoted in Fig. 2). ‘‘Early’’ to ‘‘Late’’ performance in both

groups increased with patients showing impaired consoli-

dation during both periods, F1,16 = 10.33, P \ 0.01.

Simulation results: parameter space for rmax and Smax

The strength of associations in the association matrix W is

principally determined by two parameters: (a) the learning

rate rmax which can represent biological relevant features

such as the degree of synaptic plasticity and (b) the max-

imal learning capacity Smax which may represent

constraints on memory capacity in controls and patients. To

understand the model’s behavior, we assessed the two-

dimensional parameter space for regions of plausible and

implausible performance. As seen in Fig. 3, parameter

values for simulations evinced three regions in the

parameter space: (a) plausible performance regime for

control subjects, (b) plausible performance regime for

‘‘schizophrenia’’ patients and (c) implausible performance

regime. The degree of plausibility was estimated by com-

paring model and behavioral results.

To explain the bases of implausible model behavior we

detail three main classes under which such behavior is

achieved: (a) A high rmax with a low Smax: these parameter

conditions reveal immediate saturation in performance but

with low levels of retention of associations. (b) Low rmax

with a low Smax: under these conditions, the model fails to

learn the associations as the learning threshold is never

exceeded. This pattern of model behavior is observed near

Fig. 2 Learning dynamics in controls and schizophrenia patients

over time are plotted. The data provide evidence of generally

asymptotic learning in both groups, with reduced learning rates in

patients compared to controls. Shaded area depicts ‘‘early’’ learning

period and unshaded area depicts ‘‘late’’ learning period. Error bars in

the graph are ±sem
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the limits of the plausible range of ‘‘schizophrenia’’

behavior, (c) High rmax and high Smax. This pattern is seen

when these parameters values are near maximal and lead to

rapid behavioral saturation with perfect retention.

Simulation results: parameter space for noise

and threshold (p)

In addition to rmax and Smax behavior of the model is also

governed by p and the noise term. There is a narrow range

of values of these parameters where learning occurs at a

realistic rate. The plausible threshold values are centered at

0.53 and in the range 0.4 B p B 0.6. Noise values should

be lower than 0.3 when the threshold is greater than 0.53

and greater than 0.3 when the threshold is lower than 0.53.

When there is too little noise, recall values will approach

one, and when the threshold is high, relative to noise, recall

values become smaller.

Any value in y which is greater than s is reassigned a

value of one, indicating active recall. Those below s are

given a value of zero, indicating a noise induced value.

This returns the recall vector to a binary state (ys), so it can

be compared to a perfect response vector aO. It is possible

that the model will return more than one active recall for a

given location. In this case, the recall is treated the same as

an incorrect recall. For each vector the elements in ys

corresponding to the perfect response vector are counted

and divided by the number of associations (9). This pro-

vides a score between 0 and 1 that indicates the correctness

of the subject’s recall. The learning and recall stages are

repeated for all subjects and the scores are averaged over

subject group to obtain learning curves.

A narrow range of simulations achieved under varying

conditions of noise and p are depicted in Fig. 4 and the

parameter space of noise to p governing plausible recall

performance is depicted in Fig. 5.

Healthy control performance

For healthy controls, the plausible parameter range for rmax

was 0.2 to 0.55. As shown in Fig. 3, the plausible maxi-

mum performance or Smax approaches one on this task as

perfect performance by the 8th iteration is within the range

of control performance. The representative healthy control

parameters were rmax = 0.4 and Smax = 1, yielding a

behavior curve similar to achieved control data. The

plausible parameter range can be estimated by looking at

the maximum and minimum values given by the ideal

parameters and determining the parameter values that will

give, on average, the maximum and minimum values for an

average healthy control subject. Figure 6a shows the per-

formance of the model based on ideal parameter values.

‘‘Schizophrenia’’ performance

For ‘‘schizophrenia’’ like performance, the plausible

parameter range for rmax was 0.1 to 0.25 with representa-

tive performance achieved for rmax = 0.2 and Smax = 0.7.

Figure 6b depicts average and range of performance for

schizophrenia behavior.

Discussion

Several observations result from the simulation of the

model. Firstly, there is overlap in the plausible parameter

values (Fig. 3) for healthy control subjects and schizo-

phrenia patients. This reflects the idea that schizophrenia

performance in several cognitive domains may reflect

capacity limitations resulting in partial overlap with heal-

thy control performance. This was observed in the achieved

experimental data (Fig. 2) where partial overlap in per-

formance (particularly during the early stages of learning)

was observed. Secondly, the simulations provide reason-

able representations of achieved empirical data including

both monotonicity in performance as well as the separation

between control and schizophrenia performance. Finally,

these distinctions in performance are largely captured by

systematic differences in the biologically plausible

parameters rmax and Smax that may reflect meaningful

constraints on the rates and capacity of associative learning

by biological differences between the schizophrenia and

control brain.

The interaction between rmax and Smax is particularly

noteworthy in its consistency with studies on animal and

human learning. rmax is a learning rate coefficient gov-

erning processes that can represent synaptic plasticity. The

Fig. 3 Parameter space for rmax and Smax with approximate plausible

regions labeled for healthy controls and ‘‘schizophrenia’’ patients
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induction of long-term synaptic plasticity in hippocampal

synapses has been shown to govern hippocampal place

memory in rodent studies (Nakazawa et al. 2004), and may

also relate to the increased intra-hippocampal synchrony in

neuronal outputs that has been documented during the early

stages of learning in animals (Cheng and Frank 2008). It

has been argued that altered synaptic plasticity related to

NMDAR dysfunction is central to the disconnection syn-

drome of schizophrenia (Stephan et al. 2006) though to our

knowledge no direct evidence from human or animal

models of schizophrenia have demonstrated this. Our

ongoing fMRI studies related to the current task have

provided evidence of altered plasticity of the BOLD

response in the hippocampus and the prefrontal cortex and

may provide future clarification.

Smax reflects capacity constraints on memory, consistent

with the widely accepted view that capacity constraints on

memory and attention govern human memory performance

(Chun and Turk-Browne 2007). A reduction in working

memory capacity related to diminished gamma frequency

neuronal synchrony in prefrontal cortex has been proposed

as underlying reduced working memory capacity and

ability in schizophrenia (Lewis et al. 2005). However, to

our knowledge, no definitive behavioral studies of hippo-

campal-related memory exist. Given that prefrontal and

hippocampal interactions are central to processes of asso-

ciative memory encoding and recall (Simons and Spiers

2003), in this rudimentary stage of our model, Smax can be

viewed as a representation of general memory constraints

in schizophrenia.

Fig. 4 A subset of simulations depicting model performance as a

function of noise and threshold (p) parameters. Note the results along

the diagonal that depict plausible performance for ‘‘control’’ like

behavior (diamond markers) and ‘‘schizophrenia’’ like behavior

(square markers). Note that the simulations extend beyond the eight

iterations that are used in the rest of the reported model behavior

Fig. 5 The plausible parameter space for model performance under

different values of noise and threshold (p)
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Future models of fronto–hippocampal function

in schizophrenia: mechanisms of impairment

Models of the disordered brain must capture mechanistic

interactions between brain regions that ideally span across

levels of description. For example, extensive animal work

has identified pathways within the medial temporal lobe

associated with specific aspects of learning and memory.

Studies suggest that the DG performs pattern separation by

competitive learning (McHugh et al. 2007): it removes

redundancies from the input to produce a sparse repre-

sentation for learning in the CA region (specifically the

CA3 sub-field). This process can be considered as trans-

lating information from neocortical to hippocampal space.

Granule cells in the DG innervate CA3 pyramidal cells

with particularly large and efficient synapses (the mossy

fiber pathway) that make postsynaptic neurons fire (Treves

and Rolls 1994). These mechanisms are fundamental to

learning and memory dynamics and can be modeled not

only at the level of synaptic interactions between medial-

temporal lobe network constituents but may also incorpo-

rate pharmacologic parameters (Aradi and Érdi 2006).

Formal models may be developed to capitalize on the

known relationship between glutamatergic (Aiba et al.

1994) and cholinergic function (Hasselmo 1999), and

learning and memory consolidation. For example, acetyl-

choline enhances the rate of synaptic modification in the

cortex (Skrebitsky and Chepkova 1998) which is itself

related to long-term potentiation and learning dynamics;

Models that incorporate acetylcholine antagonists such as

scopolamine (Hasselmo and Wyble 1997) have been suc-

cessfully employed to explain impaired recall during list

learning tasks. Similarly, mechanistic models of cortico–

hippocampal function that incorporate glutamatergic

receptor function are likely to provide important insights

on dysfunction in schizophrenia (Grunze et al. 1996).

Furthermore, these models must scale to also incorporate

macroscopic in vivo functional data such as fMRI that

capture neuronal interactions at the level of pools of neu-

rons rather than single unit activity (Logothetis 2002). Our

ongoing efforts are proceeding in parallel: the development

of mechanistic models of fronto–hippocampal function and

the exploration of dynamic causal models that are designed

to capture fMRI activation dynamics across brain regions

(Stephan et al. 2007).

In contrast to the abstract neural network model pre-

sented here, our ongoing approaches will center around

neural computational models based on known hippocampal

circuitry (Rolls 1996). These mechanistic models distin-

guished between a simple retinotopic visual system, and a

more detailed articulation of the hippocampal formation.

Feed-forward networks will analyze the retinal image, and

create object and location representations in the inferior

temporal and superior parietal cortices respectively. The

role of the hippocampus is to bind these two representa-

tions together (Milner et al. 1997) so that object

recollection can proceed with a location cue.

In the current version, highly processed sensory input

enters the hippocampus through the mossy fiber pathway,

originating in the entorhinal cortex. The entorhinal cortex

is itself modeled through reciprocal connections with both

hippocampus and various neocortical regions, including

visual areas, and is considered a relay for information

Fig. 6 (a) Maximum, minimum, and average values for healthy

control patients. Produced with parameter values Smax = 1 and

rmax = 0.4. Maximum and minimum curves are the basis for finding

the parameter ranges. (b) Maximum, minimum, and average values

for ‘‘schizophrenia’’ patients. Produced with parameter values Smax =

0.7 and rmax = 0.2
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arriving from multimodal association areas. These

assumptions are consistent with the known hierarchy of

processing within the medial temporal lobe structures

(Lavenex and Amaral 2000). Mossy fibers terminate on the

DG granule cells and hippocampal pyramidal neurons.

Two regions of the hippocampal formation are currently

incorporated in the working model: the DG and the CA3

region. Activation of each unit is calculated by the linear

sum of its input using known firing rate models (Booth and

Bose 2001). Synaptic connections in the inferior temporal

cortex, DG and CA3 region are modified by simple Heb-

bian plasticity. Current simulations involve large numbers

of neurons (typically *500 in one layer) in order to

implement distributed encoding in a realistic range of

sparseness (0.1 in the hippocampus). The capacity of the

system with 500 units and 0.1 sparseness is a few hundred

associations (by an order of magnitude fewer than what is

ecologically viable). However, with random initial synaptic

weights and a small learning rate, the model requires some

repetitions to learn new associations appropriately. Initial

simulations have addressed the effects of the depth of the

inferior temporal attractor basin (shallower vs. deeper) and

hippocampal learning rates on model performance. This

work however is in a preliminary stage and our ongoing

efforts will help clarify the precise nature of hippocampal

involvement and of contributions from supervisory regions

such as the frontal cortex (Hazy et al. 2007).

The current modeling work is also taking place together

with fMRI studies to understand the neural bases of dis-

ordered learning in schizophrenia. Whole brain fMRI

affords the ability to collect surrogate markers of neuronal

activity with a reasonable balance of spatial and temporal

resolution (Niessing et al. 2005). Furthermore, interactions

between brain regions can be inferred using techniques to

estimate functional or effective connections (Horwitz et al.

2005). Our parallel effort use dynamic causal modeling to

solve the ‘‘inverse problem’’ in fMRI, that is to estimate

effective connectivity parameters. Effective connectivity

describes causal influences that cortical regions or neuronal

units exert over each other (Friston et al. 2003). Effective

connectivity can be derived based on a priori assumptions

regarding the order of information flow between neuronal

units, and the influence exerted by the neuronal units on

each other. The ‘‘causal’’ bases of such modeling are

therefore self-evident.

We aim to establish a causal model with five signifi-

cance components, specifically the primary visual cortex,

the superior parietal cortex, the inferior-temporal cortex,

the hippocampus and the prefrontal cortex. The choice of

these regions parallels our computational modeling efforts

and will allow us to understand the generation of normal

and pathological temporal patterns in the collected fMRI

data. This model framework would address impaired

connections in schizophrenia, and the measure of func-

tional reduction of the information flow.

Conclusions

The modeling results reported in this paper are the initial

efforts to begin a general program that uses in vivo

imaging and computational modeling to understand func-

tional pathology in the schizophrenic brain. The reported

results are limited, yet indicate how limitations/changes in

synaptic plasticity and memory capacity can predict control

or schizophrenia-like behavior in learning and memory

dynamics. The extension of these results to process models

of frontal–hippocampal-unimodal interactions will provide

stronger bases for these findings and provide increased

translational relevance to animal studies of synaptic plas-

ticity and learning in the brain. Our in vivo studies of

changes in the neural response measured with BOLD

associated with learning dynamics (Diwadkar et al. 2008;

Murphy et al. 2008) indicate that whereas the BOLD

response in key hippocampal sub-regions such as the CA

and the DG decreases with increased memory proficiency

in controls, this pattern of BOLD plasticity is absent in

patients. Further, time-related increased functional con-

nectivity (Friston et al. 1997; Buchel et al. 1999) with

learning between the hippocampus and prefrontal cortex is

observed in controls, whereas this pattern is absent in

patients. These fMRI findings of altered plasticity and

reduced connectivity provide general convergence with our

current modeling results. However, our emerging synergy

(fMRI, behavior, and modeling) will help to further elu-

cidate the nature of altered learning dynamics in

schizophrenia, the relationship of these alterations to

molecular mechanisms, and ultimately we anticipate to

neuropharmacology and mechanisms of drug discovery

(Aradi and Érdi 2006; Javitt et al. 2008).
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